SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

HYDRAULICS

COURSE TITLE!

WTR 330-5

/ CODE NO.: SEMESTER:

WATER RESOURCES/PULP AND PAPER/CIVIL/ENVIRONMENTAL

PROGRAM:

J. BETHUNE/S. VERMA

AUTHOR:

JULY 19 93 JUNE 1992

DATE: PREVIOUS OUTLINE DATED:

APPROVED!

Deanr; ScHool of Sciences &

Natural Resources

^ -^ JUL 0 6 1993

SAUU STt. MARIE

HYDRAULICS WTR 330-5

COURSE NAME CODE NO.

TOTAL CREDIT HOURS: 7 5

PREREQUISITE I PHYIOO

I. PHILOSOPHY/GOALS:

To introduce the basic principles of fluid mechanics and the application of these principles to practical and applied problems. After completing this course the student should have a firm foundation in the field to continue learning. This course will provide the understanding of basic concepts of fluid mechanics and application of these concepts to solve real world problems in the area of specialization including hydrology, water supply and process control.

II. STUDENT PERFORMANCE OBJECTIVES:

Upon successful roapletion of this course the student will be able:

- To work with both English and SI Units and modification of mathematical equations from *one* system of units to the other.
- To have a cleex understanding of the properties of fluids, factors affecting, and their role in influencing the hydraulic design.
- To measure and estimate gauge and absolute pressure using gauges and manometers.
- To estimate the forces acting on vertical retaining walls.
- To apply the energy equation to a given hydraulic system to derive the answer for the unknown parameter.
- To apply the principles of fluid mechanics to the computation of energy, power, and pressure within fluid in given system.
- To apply the principles of hydraulics to understand the operation and working principles of flow control and flow measuring devices including orifice, venturi, nozzle, rotameters, pitot tubes for pipe flow and weirs, and flumes for open channel flow.

HYDRAULICS WTR 330-5

COURSE NAME CODE NO.

II. STUDENT PERFORMANCE OBJECTIVES: (CONT'D)

- To calculate water and power requirements and select such components as pumps and valves.
- To determine head loss due to friction and other accessories, and thus, pressure drop.
- To analyze open channel and pipe flow to such systems as water supply, water distribution, sanitary and storm sewers.
- To maintain a laboratory notebook.
- To interpret and analyze the data.
- To classify the flow based on Reynold's number and Froude's number.
- To determine the velocities her.cs flow rate in open channels based on shape of the channel, roughness and hydraulic slope.

III. TOPICS TO BE COVERED:

		NO. OF WEEKS
1.	Introduction, units and calculations	(1)
2.	Properties of fluids	(1)
3.	* Fluid pressure and its measurement	(2)
	- fluid pressure	
	- absolute and gauge pressure	
	- relationship between pressure and elevation	n
	- manometers, barometers and pressure gauges	

HYDRAULICS

COURSE NAME

WTR 330-5

CODE NO.

TOF	PICS TO BE COVERED: (CONT'D)	
4.	Fundamentals of fluid flow	(3)
5.	<pre>- types of flows - continuity equation - energy and head - Bernoulli's equation - applications of Bernoulli's equation - energy loss and gain - general energy equation - application of general energy equation * Fluid measurements</pre>	(2)
	- general methods of local velocity measurements - orifices, nozzles and tubes - weirs, flumes - other methods	
6.	* Steady flow in pressure conduits	(2)
	laminar and turbulent flowfriction formulas for laminar and turbulent flowenergy gradient and hydraulic gradient	
7.	* Minor Losses	(1)
	sourcesloss coefficientestimation for contraction, expansion, and valvesequivalent length technique	
8.	Series Pipeline System	(2)
	system classificationClass I,II,III systemsempirical equations for determining flow capacity (Hazen Willicim)	

HYDRAULICS VER 330-5

COURSE NAME CODE NO.

TOPICS TO BE COVERED: (CONT'D)

9. * Pumping Systems

(1)

- parameters involved in pump selection
- types of pumps
- static head and dynamic head
- cavitation (NPSH)

10. * Open Channel Flow

(2)

- open channel flow defined
- equations of uniform flow (Manning's Equation)
- efficient cross-section
- specific energy and critical flow
- hydraulic jump
- * Topics marked by asterisk will be supplemented by one or more labora-ory experiments to reinforce principles learned; for details consult lab manual and/or instructor.

IV. EVALUATION METHODS: (INCLUDES ASSIGNMENTS, ATTENDANCE REQUIREMENTS ETC.)

The final grade will be derived from the results of three tests and labwork and assignments, valued as follows:

Test	1	20%
Test	2	20%
Test	3	30%

Lab Reports and Assignments 30%

To pass the course a minimum of 60% is required in the weighted average plus a minimum of 60% in at least one of the tests.

GRADING:

The method of evaluation is subject to change, however students will be notified prior to any change.

HYDRAULICS WTR 330-5

COURSE NAME CODE NO.

V. REQUIRED STUDENT RESOURCES:

Mott, Robert, (1993), <u>Applied Fluid Mechanics</u>, Fourth Edition, Charles E. Merrill Publishing Company, Toronto.

Verma, S.C. (1992), LABORATORY MANUAL, HYDRAULICS - WTR330, Sault College

VI. ADDITIONAL RESOURCE MATERIALS AVAILABLE IN THE COLLEGE LIBRARY BOOK SECTION:

Daugherty, R.L., and J.B. Franzini (1977), <u>Fluid Mechanics With Engineering Applications</u>, 7th Edition, McGraw-Hill Book Company, Toronto.

Douglas, J.F. (1980), <u>Solutions to Problems in Fluid Mechanics</u>, Pitman Publishing Company, London, England.

Gramet, Irving, (1989), <u>Fluid Mechanics for Engineering Technology</u>, Prentice- Hall Canada Inc., Toronto.

King, H.W., CO. Wisler and J.G. Woodburn (1980), <u>Hydraulics</u>, 5th Edition, Robert E. Krieger Publishing Company, Huntington, New York.

VII. SPECIAL NOTES:

- Eighty percent attendance is reguired for anyone to be considered for supplementary examination.
- Home assignments are due one week after. Late submissions will be penalized.

Laboratory work is an important component of this course. The concepts discussed in the theory class will be reinforced by performing laboratory experiments.

Students with special needs (e.g. physical limitations, visual impairments, hearing impairments, learning disabilities) are encouraged to discuss reguired accommodations confidentially with the instructor.

Your instructor reserves the right to modify the course as he/she deems necessary to meet the needs of students.